Introduction to GLMM

Coding 4 Conservation 2022

Emily Ruhs & Dave Klinges

Going well?

Not going so well?

Outline for today

- 1. Brief review of generalized linear models (GLM; from Dave on Monday)
 - 1. Check-in <u>2 minutes</u>
- 2. Introduction to generalized linear mixed models (GLMM)
- 3. Random effects
- 4. Why and when might you use a GLMM?
 - 1. Check-in <u>2 minutes</u>
- 5. Introducing generalized additive models (GAM)
- 6. Why and when might you use a GAM?
- 7. Introducing the dataset
- 8. Break <u>5 minutes</u>

Progression of model selection

Simple statistics

Data normality; T-tests, ANOVA

1. Univariate Linear models

One predictor variable

2. Multivariate Linear models

More than one predictor variable

3. Generalized Linear models

Utilizes link function; specify distribution

4. Generalized Linear mixed models

Includes random and/or nested effects

LM vs. GLM Can't we just transform our data?

GLM are extensions of linear models (LM), but we can use them for data that is not normally distributed.

Revisiting fixed effects

GLM are extensions of linear models (LM)!

 $Y = \alpha + \beta_i x + \varepsilon_{ij}$ Model 1 = lm(response ~ predictor, data=data)

 $Y_{ij} = \alpha + \beta_i x + \varepsilon_{ij}$ Model 2 = glm(response ~ predictor, family=family, data=data)

Model 1 = lm(weight ~ height, data=data) *assumes normal Model 2 = glm(weight ~ height, data=data) Model 1 results = Model 2 results

Review of GLM

How to include parameters in a model?

tail length \sim age + sex + td = random

According to your research questions and hypotheses, does a categorical variable represent a **driver of primary interest**, or a **cohort** of collected data **representing a broader population or distribution**?

If a **driver**, consider including it in your model as a **fixed effect**.

If a **cohort drawn from a population,** or a **repeated measure** of the same state, consider including it in your model as a **random effect.**

Review of GLM

Some variables could be best represented as fixed or random, depending on your questions:

Site: repeated measures of forest habitat

tail length ~ age + sex + site tail length ~ age + sex + (1|site)

Rural

Urban

Review of GLM

What if you have multiple individuals that are sampled across different ages?

Check-in time!

Introducing generalized linear mixed models (GLMMs)

What are GLMMs?

Model that allows for non-normally distributed response variables (y) and predictor variables (x) as fixed or random effects

Lemur tail length ~ Age + Sex + (1| Forest) Poisson Num Factor Random

Importantly there are three parts: (1) A systematic component (e.g. fixed effect), (2) a random component, and (3) a link function

Assumptions that must be met:

- 1. Assumes the distribution of the response is a member of the exponential family
 - 1. Gaussian, binomial, Poisson, Negative binomial, gamma, inverse gaussian, beta, Weibull, Multinomial, Dirichlet
- 2. There is a linear predictor
- 3. There is a link function that related the linear predictor to the mean of the response
 - 1. Canonical link of the response distribution

*** Check or be aware of collinearity and singularity!

Goals of GLMM:

- 1. Estimate the values of the model parameters
- 2. Estimate any appropriate variances

 $Y_{ij} = \alpha + \beta_i x + Z_i x + e$

The β_i are <u>fixed effects</u>, Z_i are <u>random effects</u>, e is the variance.

GLMMs can be extensions of generalized linear models (GLM)

 $Y_{ij} = \alpha + \beta_i x + \varepsilon_{ij}$

Model 1 = glm(response ~ predictor, family=family, data=data)

$$Y_{ij} = \alpha + \beta_i x + \dots \beta_n x + \varepsilon_{ij}$$

Model 2 = glmer(response ~predictor + (1| variable), family=family, data=data)

<u>This is your random effect.</u> Could include things like sex, individual ID, nest ID, geographic region, hospital

Benefits of including random effects:

It is often useful to treat certain effects as random, as opposed to fixed

- Suppose we have k predictor variables. If we treat these as fixed, we lose k degrees of freedom.
- If we assume each of the k realizations are drawn from a normal distribution with mean zero and unknown variance, <u>only one degree of</u> <u>freedom is lost - for estimating the variance</u>

Lemur tail length ~ Age + Site + error300 samples - 3df = 297 dfLemur tail length ~ Age + (1| Site) + error300 samples - 2df = 298 df

© Bruce Walsh, University of Washington

When might we use GLMM?

Generalized linear mixed models include both fixed effects and random effects to allow for:

- Repeated measures
- Temporal correlation
- Spatial correlation
- Heterogeneity
- Nested data

We use the model glmer() in R

Model = glmer(formula, family=family, data=data)

Example of repeated measures

Sampling the same individuals multiple times

- 1. Tracking seasonality
- 2. Monitoring growth
- Change in status (infected/not infected)
- 4. Longitudinal clinical data

Example of spatial correlation

Sampling closely connected areas

1. Geographic regions

Example of nested data

Individuals within a treatment or area

 Might be repeatedly sampled

Example of random effects

Model 2 = glmer(response ~predictor + (1| random), family=family, data=data)

 $Y_{ij} = \alpha + \beta_i x + Z_i x + \varepsilon_{ij}$

When we include random effects, we assume observations within the same Y_{i1} are correlated, and observations between Y's are independent (e.g. Y_{i1} and Y_{i2})

Explaining a GLMM results table

<pre>> summary(m6) Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] Family: Negative Binomial(1.3844) (log)</pre>
Formula: GIparasites ~ treatment + (1 year) Data: lemur.data Form of your model
AIC BIC logLik deviance df.resid 3363.3 3379.3 -1677.7 3355.3 396
Scaled residuals: Min 10 Median 30 Max
-1.1448 -0.6781 -0.3015 0.5365 3.3872
Random effects: Groups Name Variance Std.Dev. year (Intercept) 0.01263 0.1124 Number of obs: 400, groups: year, 4 Number of obs: 400, groups: year, 4
Fixed effects: Estimate Std. Error z value Pr(> z)
(Intercept) 3.2623 0.0743 43.906 < 2e-16 *** treatment1 -0.5841 0.1640 -3.562 0.000368 *** ← Fixed effects
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) treatment1 -0.283

Check-in time!

Introducing generalized additive models (GAMs)

A generalized additive model is a generalized linear model with a linear predictor involving a sum of smooth functions of covariates.

Allows for:

• Flexible specification of the dependent variable

But you must:

- Specify the "smooth function"
- Choose how "smooth" to make it.

WHAT DOES THIS MEAN?

Introducing GAMs

An additive model where the impact of the predictive or independent variables is captured through smoothing functions:

**Importantly - you can control how smooth the predictor functions are!

Introducing GAMs

A spline curve is a is piecewise polynomial curve, i.e., it joins two or more polynomial curves. The locations of the joins are known as "knots".

Three classes of smoothers:

• Local regression (loess)

Smoothing splines

Helpful link!

gam <- gam(response ~ predictor+ s(smoother), k=#, bs="X"), data=data, family="family")

• Regression splines (B-splines, P-splines, thin plate splines)

Introducing GAMs

Most common options for smoothers

bs= "?"

Thin-plate = "tp" Cubic regression = "cr" or "cs" P-spline = "ps" or "cp" (cyclic version) Random effects = "re" And more....

Broadly speaking the default penalized thin plate regression splines tend to give the best MSE performance... - Simon Wood (mgcv author)

https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/smooth.terms.html https://www.mainard.co.uk/post/why-mgcv-is-awesome/

When might we use a GAM?

Why are GAMs useful?

- Easy to interpret
- Flexible predictor functions can uncover hidden patterns in the data
- Regularization of predictor functions helps avoid overfitting

When do you use GAMs?

- 1. There is a clear contribution of the independent variable to the prediction
- 2. But the relationship might not be known or not expected to be linear or non-linear

Do you love GAMs now and you want to learn more?

https://noamross.github.io/gams-in-r-course/

Introducing the dataset

Builds off the dataset that Sophia used for Im lecture

100 lemurs tracked over time and space.

Missing one year (2020) - COVID * Dave covered this Monday

There are:

- Female/male
- Family groupings
- Three locations across Madagascar

Lemurs were treated in 2022 for GI parasites

Lemur dataset

• • AutoSave • • • • • • • • • • • • • • • • • • •			Q			
Home Insert Draw I	Page Layout Form	ulas Data Review	View 🛛 Tell me		🖄 Share	Comments
	- - - Alignment Number	Conditional Formatting × Format as Table × Cell Styles ×	Cells Editing	Analyze Data	Sensitivity	

113 $\stackrel{\bullet}{\checkmark}$ \times \checkmark f_x 2022

	A	В	С	D	E	F	G	Н	1	J	К	L
1	location	ID	family	age	sex	tail	Glparasites	sickGlparasit	year	treatment	predictions	
2	Toliara	1	1	0	Male	27.140514	32	infected	2018	Non	37.904865	
3	Toliara	1	1	1	Male	30.309658	25	infected	2019	Non	33.190076	
4	Toliara	1	1	2	Male	30.309658	10	not infected	2021	Non	25.446898	
5	Toliara	1	1	3	Male	30.309658	10	not infected	2022	Oui	22.28169	
6	Toliara	2	1	0	Female	22.939998	26	infected	2018	Non	25.60474	
7	Toliara	2	1	1	Female	25.416729	23	infected	2019	Non	22.4199	
8	Toliara	2	1	2	Female	25.416729	25	infected	2021	Non	17.189382	
9	Toliara	2	1	3	Female	25.416729	5	infected	2022	Oui	15.051284	
10	Antsiranana	3	2	0	Male	26.044464	58	infected	2018	Non	37.904865	
11	Antsiranana	3	2	1	Male	28.868004	49	infected	2019	Non	33.190076	
12	Antsiranana	3	2	2	Male	28.868004	43	infected	2021	Non	25.446898	
13	Antsiranana	3	2	3	Male	28.868004	20	infected	2022	Oui	22.28169	
14	Antsiranana	4	2	1	Male	34.688244	42	infected	2018	Non	37.904865	
15	Antsiranana	4	2	2	Male	38.071702	35	infected	2019	Non	33.190076	
16	Antsiranana	4	2	3	Male	38.071702	23	infected	2021	Non	25.446898	
17	Antsiranana	4	2	4	Male	38.071702	12	infected	2022	Oui	22.28169	
18	Antsiranana	5	2	1	Female	16.668908	34	infected	2018	Non	25.60474	
19	Antsiranana	5	2	2	Female	20.663607	31	infected	2019	Non	22.4199	
20	Antsiranana	5	2	3	Female	20.663607	25	infected	2021	Non	17.189382	
21	Antsiranana	5	2	4	Female	20.663607	25	infected	2022	Oui	15.051284	
22	Toliara	6	3	1	Male	21.351961	63	infected	2018	Non	37.904865	
23	Toliara	6	3	2	Male	26.270834	55	infected	2019	Non	33.190076	
24	Toliara	6	3	3	Male	26.270834	15	infected	2021	Non	25.446898	
25	Toliara	6	3	4	Male	26.270834	17	infected	2022	Oui	22.28169	
26	Toliara	7	3	2	Male	27.48683	54	infected	2018	Non	37.904865	
27	Toliara	7	3	3	Male	32.795534	47	infected	2019	Non	33.190076	
28	Toliara	7	3	4	Male	32.795534	51	infected	2021	Non	25.446898	
29	Toliara	7	3	5	Male	32.795534	20	infected	2022	Oui	22.28169	
30	Antsiranana	8	5	2	Female	18.034205	16	infected	2018	Non	25.60474	
31	Antsiranana	8	5	3	Female	20.783593	13	infected	2019	Non	22.4199	
32	Antsiranana	8	5	4	Female	20.783593	9	infected	2021	Non	17.189382	

	E				- +	110%	
--	---	--	--	--	-----	------	--

Ready

Break – 5 minutes

Please download the tutorial if you have not already!

Week 2: Intro to simple statistics

- Monday, June 27: Introduction to simple statistics (Kacie Ring)
 - Simple statistics tutorial
 - Simple statistics Rmarkdown download
- Wednesday, June 29: Introduction to linear regression (Sophia Horigan)
 - Linear regression lecture
 - Linear regression tutorial
- Mentor/Mentee Goal: Explore individual datasets + Refine research questions
 - Please fill our this contract as a mentor/mentee pair by Friday, July 8, 2022!

Week 3: Intro to mixed modeling

- Monday, July 11: Intro to mixed modeling lecture (Emily Ruhs / Dave Klinges)
 - Mixed Models (zip)
- Wednesday, July 13: Intro to mixed modeling lecture tutorial (Emily Ruhs / Dave Klinges)
- Mentor/Mentee Goal: Outline plan for research analyses on independent work

Week 4: Community biodiversity analyses

- Monday, July 25: Community biodiversity analysis lecture (Katie Young)
- <u>Wednesday, July 27</u>: Community biodiversity analysis tutorial (Katie Young)
- Mentor/Mentee Goal: Outline 3-5 figures and accompany analyses for final paper

Week 5: Building and fitting compartmental models in ecology

- Monday, August 8: Building and fitting compartmental models in ecology lecture (Katie Gostic)
- <u>Wednesday, August 10</u>: Building and fitting compartmental models in ecology tutorial (Katie Gostic)
- Mentor/Mentee Goal: Begin work on figures for final paper

Week 6: Model evaluation and comparison

Week 3 - here!

Extra slides

Real-life GAM examples

The tradeoff between model fit and smoothness is controlled by the smoothing parameter, λ