
Compartmental models, Part II

Agenda:

1. Predator-prey models
2. SIR models
3. Modify the SIR to an SEIR model
4. Euler’s method: how do we simulate the dynamics of an SIR 

model?

R tutorial 



3. Two-population model
3. modèles de deux populations



How does the population of fossa regulate 
the population of lemurs in Ranomafana?

Comment la population de “fossa” régule la 
population de lemuriens à Ranomafana?

The predator-
prey model

Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are 

homogenously mixed
3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments

are expressed mathematically
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Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are 

homogenously mixed
3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments

are expressed mathematically

State variables
x : number of lemurs

y : number of fossa
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Practical tip

Set the size of the lemur, or fossa population to 0 
to check that the model makes sense.
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When there are no fossa:

• The lemur population 
grows exponentially

• The fossa population 
does not grow
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SOME ASSUMPTIONS
• the lemur has an unlimited food supply
• the lemur only dies from being eaten by fossa
• the fossa is totally dependent on a single prey 
species (the lemur) as its only food supply

Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are 

homogenously mixed
3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments

are expressed mathematically
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How are we doing?

Good! 🙂✅❤👍

Bad! 👎😮❌🤯
(or ask a question in the chat)



4. SIR Models
4. Les modèles SIR



How does measles transmit through 
Antananarivo?

Comment la rougéole se transmet-elle à
Antananarivo?

The SIR model Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are 

homogenously mixed
3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments

are expressed mathematically
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What are the big assumptions here?
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S I R
people mix uniformly (mass ac2on)
les gens se mélangent uniformément
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Compartmental models (Mechanistic Models)
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are expressed mathematically

infec2on recovery

The SIR model

Parameters
𝛽: transmission rate
𝛾: rate of recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#&
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#'
#%
= 𝛾𝐼

[	rate	of	3low	into	S	]	– [	rate	of	3low	out	of	S	]

[	rate	of	3low	into	I	]	– [	rate	of	3low	out	of	I	]

[	rate	of	3low	into	R	]	– [	rate	of	3low	out	of	R	]
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𝛾: rate of recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#&
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#'
#%
= 𝛾𝐼



How are we doing?

Good! 🙂✅❤👍

Bad! 👎😮❌🤯
(or ask a question in the chat)



S I R
suscep2ble infec2ous recovered

Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are 

homogenously mixed
3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments

are expressed mathematically

transmission recovery

The SIR model

Parameters
𝛽: transmission rate
𝛾: rate of recovery

𝛽 𝛾

What will the dynamics look like?



The SIR model



The SIR model

Set: I=1

Itransmission recovery

𝛽𝑆𝐼 𝛾

R0 = �N/�

The average number of persons infected by an infectious individual 
when everyone is susceptible (S=100%, or S=1, start of an epidemic)



The SIR model

Set: I=1

Itransmission recovery

𝛽𝑆𝐼 𝛾

R0 = �N/�

The average number of persons infected by an infectious individual 
when everyone is susceptible (S=100%, or S=1, start of an epidemic)



The SIR model

Itransmission recovery

𝛽𝑆𝐼 𝛾

R0 = �N/�

The average number of persons infected by an infectious individual 
when everyone is susceptible (S=100%, or S=1, start of an epidemic)

R0SRE		= “R-effective"

…as the epidemic progresses and S falls



Question:

What is the minimum R0 value 
at which an epidemic can grow?

Quelle est la valeur R0 minimale à 
laquelle une épidémie peut se 
augmenter ? 

(Type answers in the chat)



The SIR model



The SIR model



The SIR model : vaccination

I Rtransmission recoveryS
vaccina2on

Vaccination moves people out of susceptibles into 
the immune (recovered) class.

La vaccination éloigne les personnes sensibles de la 
maladie dans la classe immunitaire (rétablie).



The SIR model : vaccination



The SIR model : vaccination

Proportion 
that needs to 
be vaccinated 
to interrupt 
transmission

pc = 1� 1

R0



The SIR model : eradication
pc = 1� 1

R0

More transmissible 
diseases are harder to 
eradicate



How are we doing?

Good! 🙂✅❤👍

Bad! 👎😮❌🤯
(or ask a question in the chat)



5. Modifying SIR models



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infec2ous recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#&
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#'
#%
= 𝛾𝐼



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infectious recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#&
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incuba2on

ß How do we modify 
the equa2ons?

🤔



Modifying the SIR model à
Include a latent period SEIR

S I R
susceptible infec2ous recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#(
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#&
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incuba2on

[	rate	of	3low	in	]	– [	rate	of	3low	out	]

ß How do we modify 
the equa2ons?

1. Add a dE/dt equa2on



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infec2ous recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#(
#%
= 𝛽𝑆𝐼 − 𝜇𝐸

#&
#%
= 𝛽𝑆𝐼 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incuba2on

ß How do we modify 
the equa2ons?

1. Add a dE/dt 
equa2on

2. Check and update 
dI/dt equa2on.

[	rate	of	3low	in	]	– [	rate	of	3low	out	]



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infec2ous recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#(
#%
= 𝛽𝑆𝐼 − 𝜇𝐸

#&
#%
= 𝜇𝐸 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incuba2on

ß How do we modify 
the equations?

1. Add a dE/dt 
equation

2. Check and update 
the dI/dt equations.



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infec2ous recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#(
#%
= 𝛽𝑆𝐼 − 𝜇𝐸

#&
#%
= 𝜇𝐸 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incubation

ß How do we modify the equa2ons?

1. Add a dE/dt equa2on
2. Check and update the dS/dt and 

dI/dt equa2ons.
3. Check that flows in are always 

equal to flows out



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infec2ous recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#(
#%
= 𝛽𝑆𝐼 − 𝜇𝐸

#&
#%
= 𝜇𝐸 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incuba2on

ß How do we modify the equa2ons?

1. Add a dE/dt equa2on
2. Check and update the dS/dt and 

dI/dt equa2ons.
3. Check that flows in are always 

equal to flows out



Modifying the SIR model à
Include a latent period SEIR

S I R
suscep2ble infectious recovered

transmission recovery

𝛽 𝛾

#$
#%
= −𝛽𝑆𝐼

#(
#%
= 𝛽𝑆𝐼 − 𝜇𝐸

#&
#%
= 𝜇𝐸 − 𝛾𝐼

#'
#%
= 𝛾𝐼

E 𝜇
exposed

incuba2on

ß How do we modify the equa2ons?

1. Add a dE/dt equa2on
2. Check and update the dS/dt and 

dI/dt equa2ons.
3. Check that flows in are always 

equal to flows out



Key concepts

To modify a compartmental model:

1. Draw a box diagram.

2. Write down equations from the box diagram, carefully keeping 
track of flows into and out of each compartment.

3. Check to make sure the flows in are equal to the flows out.



How are we doing?

Good! 🙂✅❤👍

Bad! 👎😮❌🤯
(or ask a question in the chat)



6. How do we calculate the state 
(dynamics) of the system from 
differential equations?



The basic
population model

l=Nt+1/Nt

Nt+1 = l Nt

Nt= 𝜆tN0

dN(t)/dt = rN(t)

N(t) = N(0)ert

r=[N(t)-N(0)]/tRate of change

Change equa2on
à Can be solved itera2vely

State equa2on
à Can plug in t to solve for N(t)



How do we use this model to calculate 
S(t), I(t), and R(t)?

S I R
suscep2ble infec2ous recovered

transmission recovery

𝛽 𝛾

!"
!#
= −𝛽𝑆𝐼

!$
!#
= 𝛽𝑆𝐼 − 𝛾𝐼

!%
!#
= 𝛾𝐼

Change equa2on

State equa2on

𝑆 𝑡 = ?
𝐼 𝑡 = ?
𝑅 𝑡 = ?



Euler’s method

Imagine that you are driving a car down a highway.

At 2me t=0, we measure the car’s speed is 100km/hr.

t=0
dx/dt = 100km/hr



Euler’s method

Imagine that you are driving a car down a highway.

At 2me t=0, we measure the car’s speed is 100km/hr.

We can es2mate the car’s posi2on:

1 hr later x = x0 + 100km/hr*1hr        = x0 + 100km

t=0
x= x0

dx/dt = 100km/hr

t=1hr

100 km



Euler’s method

Imagine that you are driving a car down a highway.

At 2me t=0, we measure the car’s speed is 100km/hr.

We can es2mate the car’s posi2on:

1 hr later 𝑥 = 𝑥0 + 100 &'
()
∗ 1ℎ𝑟 = 𝑥0 + 100𝑘𝑚

1s later 𝑥 = 𝑥0 + 100 &'
()
∗ *
+,--

ℎ𝑟 = 𝑥0 + 0.278𝑘𝑚

t=0
dx/dt = 100km/hr



Euler’s method

t=0
dx/dt = 100km/hr

🤔Which es2mate do you trust most?

Imagine that you are driving a car down a highway.

At 2me t=0, we measure the car’s speed is 100km/hr.

We can es2mate the car’s posi2on:

1 hr later 𝑥 = 𝑥0 + 100 &'
()
∗ 1ℎ𝑟 = 𝑥0 + 100𝑘𝑚

1s later 𝑥 = 𝑥0 + 100 &'
()
∗ *
+,--

ℎ𝑟 = 𝑥0 + 0.278𝑘𝑚



Euler’s method

We can use Euler’s method to es2mate changes in popula2on size:

1. Evaluate dN/dt
2. Calculate the state of the system aZer dt units of 2me elapse:

N(t+dt) = N(t) + dN/dt * dt
next state = current state + change between t and dt

time

N

simple popula2on growth:
dN/dt = rN

dN/dt = rN0

dt



Euler’s method

If we needed to es2mate the car’s posi2on accurately aZer 1h, we could use Euler’s 
method:

Repeat the following steps un2l you reach 1h.
1. Measure the car’s speed. 
2. Project forward dt 2me units to es2mate the car’s posi2on at the next 2me step.

Mathema2cally:
1. Evaluate dx/dt
2. Calculate the state of the system aZer dt units of 2me elapse:

x(t+dt) = x(t) + dx/dt * dt

t=0
dx/dt = 100km/hr

t=10m
dx/dt = 120km/hr

t=20m
dx/dt = 90km/hr

…etc

next state = current state + change between t and dt



Euler’s method

If we needed to es2mate the car’s posi2on accurately aZer 1h, we could use Euler’s 
method:

Repeat the following steps un2l you reach 1h.
1. Measure the car’s speed. (evaluate dx/dt)
2. Project forward dt 2me units to es2mate the car’s posi2on at the next 2me step.

Smaller dt:
More accurate es2mates
More computa2on

t=0
dx/dt = 100km/hr

t=1s
dx/dt = 101km/hr

t=2s
dx/dt = 100km/hr

…etc

t=3s



Euler’s method

We can use Euler’s method to es2mate changes in popula2on size:

1. Evaluate dN/dt
2. Calculate the state of the system aZer dt units of 2me elapse:

N(t+dt) = N(t) + dN/dt * dt
next state = current state + change between t and dt

2me

N

simple population growth:
dN/dt = rN

dN/dt = rN

dt



Euler’s method

We can use Euler’s method to es2mate changes in popula2on size:

1. Evaluate dN/dt
2. Calculate the state of the system aZer dt units of 2me elapse:

N(t+dt) = N(t) + dN/dt * dt
next state = current state + change between t and dt

2me

N

simple population growth:
dN/dt = rN



Practical problems

Euler’s method approximates the dynamics of the system, but it is not an exact 
soluAon.

Speed/accuracy trade-off: We need to choose a dt small enough to be accurate, but 
large enough to be computa2onally feasible.

To avoid these problems, we almost always use R’s built-in ODE solver, lsoda().

The computer uses a method similar to Euler integra2on.
But the computer chooses the step size for us, in a way that maximizes 
speed while guaranteeing a high level of accuracy.



Key concepts

• We cannot usually solve to find a state equaIon to simulate the 
dyanmics of a biological system from a compartmental model.

• Instead, we use an ODE solver in R.

• We could also use Euler’s method (discrete approximaIon). But the 
accuracy of our soluIon is sensiIve to the size of the Imestep, dt. 
There is a pracIcal tradeoff between speed (larger Imesteps) and 
accuracy (smaller Imesteps).



How are we doing?

Good! 🙂✅❤👍

Bad! 👎😮❌🤯
(or ask a question in the chat)



Tutorial

1. Simulate the conInuous populaIon growth model three ways:
a. Using the state equa2on, N(t) = N0*exp(rt)
b. Using Euler’s method (discrete approxima2on)
c. Using an ODE solver

2. Simulate the dynamics of a predator-prey system using an ODE 
solver

3. Simulate the dynamics of an SIR model using an ODE model

4. Modify the SIR model to an SEIR model


