Compartmental models, Part Il

Agenda:

1. Predator-prey models

2. SIR models

3. Modify the SIR to an SEIR model

4. Euler’s method: how do we simulate the dynamics of an SIR

model?

R tutorial



3. Two-population model
3. modeles de deux populations




The predator- Compartmental models (Mechanistic Models)

prey model 1. Populations are divided into compartments

2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
determined by biological systems
4. Rates of transferring between compartments
are expressed mathematically

How does the population of fossa regulate
the population of lemurs in Ranomafana®?

Comment la population de “fossa” régule la
population de lemuriens a Ranomafana?
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Compartmental models (Mechanistic Models)

The predator-

prey model 1. Populations are divided into compartments

2. Individuals within a compartment are
homogenously mixed

lemur reproduction 3. Compartments and transition rates are

'8 determined by biological systems

4. Rates of transferring between compartments
are expressed mathematically
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prey model 1. Populations are divided into compartments
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Practical tip

Set the size of the lemur, or fossa population to O
to check that the model makes sense.

State variables Parameters
x : number of lemurs (X : lemur rep. rate

// TN lemur death\. y : number of fossa 5 : lemur death rate
- .
/ (depends on fos}sa population) 5 . fossa rep. rate
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Practical tip

The predator-

prey model Set the size of the lemur, or fossa population to 0
to check that the model makes sense.

lemur reproduction
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The predator_ Practical tip

prey model Set the size of the lemur, or fossa population to 0
to check that the model makes sense.
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The predator- Compartmental models (Mechanistic Models)
prey model

1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are

'8 determined by biological systems
4. Rates of transferring between compartments
are expressed mathematically

lemur reproduction
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/
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SOME ASSUMPTIONS
e the lemur has an unlimited food supply
e the lemur only dies from being eaten by fossa

1 ,y e the fossa is totally dependent on a single prey
fossa death species (the lemur) as its only food supply
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~ 4. SIR Models
) 4. Les modeles SIR



The S|R model Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
determined by biological systems
4. Rates of transferring between compartments
are expressed mathematically

How does measles transmit through
Antananarivo?

Comment la rougéole se transmet-elle a
Antananarivo?
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What are the big assumptions here?
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are expressed mathematically
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people mix uniformly (mass action)

les gens se mélangent uniformément
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1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
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are expressed mathematically

susceptible infectious recovered
recovery is
S infection recovery permanent
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The SlR model Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are

taille de population determined by biological systems
constante 4. Rates of transferring between compartments
are expressed mathematically

population size constant - no
births, deaths, or migration

susceptible infectious recovered
recovery is
S infection recovery permanent
—l >
la récupération
est
permanente
people mix uniformly no latent period
(mass action) (infectious when infected)
les gens se mélangent pas de période de latence

uniformément



Compartmental models (Mechanistic Models)

The SIR model

1. Populations are divided into compartments

Parameters 2. Individuals within a compartment are
f: transmission rate homogenously mixed
y: rate of recovery 3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments
are expressed mathematically

susceptible infectious recovered
infection recovery
S - :
b y
as _
E — [ rate of flow into S | - [ rate of flow out of S ]
a_
dt
dR

dt



The SlR model Compartmental models (Mechanistic Models)

1. Populations are divided into compartments

Parameters 2. Individuals within a compartment are
f: transmission rate homogenously mixed
y: rate of recovery 3. Compartments and transition rates are

determined by biological systems
4. Rates of transferring between compartments
are expressed mathematically

susceptible infectious recovered
infection recovery
S - :
b y

as
= = _BsI
dt
dl __ _
a = [ rate of flow into I ]| - [ rate of flow out of I ]
dR

dt
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Parameters
f: transmission rate
y: rate of recovery
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Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
determined by biological systems
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are expressed mathematically
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1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
determined by biological systems
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are expressed mathematically
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The SIR model

Parameters
f: transmission rate
y: rate of recovery

susceptible

S infection

p
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o= PSI
dl __ .
dR

dt

Compartmental models (Mechanistic Models)
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2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
determined by biological systems
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The SIR model

Parameters
f: transmission rate
y: rate of recovery

TN
susceptible //

|

transmission
—p

p

infectious

Compartmental models (Mechanistic Models)

1. Populations are divided into compartments
2. Individuals within a compartment are
homogenously mixed
3. Compartments and transition rates are
determined by biological systems
4. Rates of transferring between compartments
are expressed mathematically

recovered

recovery

Y

What will the dynamics look like?



The SIR model

recovered

proportion of the population

susceptible

0 20 40 60 80 100



The SIR model

Set: I1=1
'
transmission recovery
pSI 14

Ry = BN/~

The average number of persons infected by an infectious individual
when everyone is susceptible (5=100%, or S=1, start of an epidemic)



The SIR model
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The average number of persons infected by an infectious individual
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The SIR model
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transmission

BSI

recovery
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Ry =3

Ry = BN/~

The average number of persons infected by an infectious individual
when everyone is susceptible (5=100%, or S=1, start of an epidemic)

R,=RyS “R-effective”

...as the epidemic progresses and S falls



Question:

What is the minimum RO value
at which an epidemic can grow?

Quelle est la valeur RO minimale a
laquelle une épidémie peut se
augmenter ?

(Type answers in the chat)
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The SIR model : vaccination

77N
|
transmission recovery
> —

vaccination

Vaccination moves people out of susceptibles into
the immune (recovered) class.

La vaccination éloigne les personnes sensibles de la
maladie dans la classe immunitaire (rétablie).



The SIR model : vaccination
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The SIR model : vaccination
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The SIR model : eradication

100%
A

50% Influenza, Ro=2, p=50%

Vaccination coverage needed pec

Malaria, Ro>1007, p=99%

Measles, Ro=15, p=95%
Polio, Ro=7, p=85%
Smallpox, Ro=5, p=80%

More transmissible
diseases are harder to
. eradicate

&)
&)

5 15

25

Basic reproductive number, Ro






5. Modifying SIR models



Modifying the SIR model 2>
Include a latent period SEIR

susceptible . infectious recovered

“a

transmission recovery

das

E —_ —IBSI
dl __ .
dR

dt



Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed . infectious recovered

transmission incubation recovery

as

E — —,BSI

dl
dl — BS] —y] G
aR ‘'z

z-




Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed infectious recovered
U |4
—
transmission incubation recovery
ds
dc —pSI & How do we modify
the equations?

Ccll_E — [ rate of flow in | - [ rate of flow out | d

t

1. Add a dE/dt equation

a — BSI —yI
dt
dR



Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed infectious recovered
U 14
—
transmission incubation recovery
E . —,BSI < How do we modify
dt the equations?
dE __ .
dt BSI — uE 1. Add a dE/dt
ar _ BS] — [ rate of flow in | - [ rate of flow out ] equation
dt )/I 2. Check and update
d_R = v] dl/dt equation.
a7



Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed
U
—
transmission incubation
ds
= = —BSI
= P
aE _ pS] — yE
— =pSI —
4 = uE —ylI
a M 14
dR
_— = )[I

- infectious

recovered

recovery

< How do we modify
the equations?

1. Add a dE/dt
equation

2. Check and update
the dl/dt equations.



Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed infectious recovered
U |4
—
transmission incubation recovery
E _ —,BSI < How do we modify the equations?
dt
dE __ . 1. Add a dE/dt equation
dt ’BSI ‘uE 2. Check and update the dS/dt and
dl __ . dl/dt equations.
dt ‘UE )/I 3. Check that flows in are always

dR I equal to flows out



Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed
U
—
transmission incubation
ds
= = —BSI
= P
aE _ pSJ|— yE
— =pSI—
4 = uE |-yl
a M 14
dR
_— = I
dt 14

- infectious recovered

recovery

< How do we modify the equations?

1.
2.

Add a dE/dt equation
Check and update the dS/dt and

dl/dt equations.
Check that flows in are always
equal to flows out



Modifying the SIR model 2>
Include a latent period SEIR

susceptible exposed infectious recovered
U |4
—
transmission incubation recovery
E _ —,BSI < How do we modify the equations?
dt
dE __ . 1. Add a dE/dt equation
dt ’BSI ‘uE 2. Check and update the dS/dt and
dl __ . dl/dt equations.
dt ‘UE )/I 3. Check that flows in are always
d_R — | v] equal to flows out
a |V




Key concepts

To modify a compartmental model:
1. Draw a box diagram.

2.  Write down equations from the box diagram, carefully keeping
track of flows into and out of each compartment.

3. Check to make sure the flows in are equal to the flows out.






6. How do we calculate the state
(dynamics) of the system from
differential equations?



The basic
population model

Discrete time

population size, N,

time

Rate of change A=N, /N,

Change equation _

—> Can be solved iteratively Newt = 4 N
State equation

— Can plug in t to solve for N(t)

Continuous time

population size, N,

las dt—0
time

=[N(t)-N(O)]/t

dN(t)/dt = rN(t)



How do we use this model to calculate
S(t), I(t), and R(t)?

susceptible . infectious recovered

N
\
\
'

transmission recovery
ds
ac = P o
al — gy — 2
Change equation dt pSI—vylI 2
R _ ol 2 o
dt 14 2 S
S 3
S
ga-
S(t) =7 5, |
. — 9 o | I
State equation I(t) = 0 20

40

I
60

I I
80 100

recovered

susceptible



Euler’s method

Imagine that you are driving a car down a highway.

At time t=0, we measure the car’s speed is 100km/hr.

»
»

(0]

t=0
dx/dt = 100km/hr



Euler’s method

Imagine that you are driving a car down a highway.

At time t=0, we measure the car’s speed is 100km/hr.

100 km

(2= >
t=0 t=1hr

X=Xo
dx/dt = 100km/hr

We can estimate the car’s position:

1 hr later X = Xo + 100km/hr*1hr = Xo + 100km



Euler’s method

Imagine that you are driving a car down a highway.

At time t=0, we measure the car’s speed is 100km/hr.

N> G

t=0
dx/dt = 100km/hr

We can estimate the car’s position:

1 hr later x = xo + 10057+ 1hr = x, + 100km
1s later x = xo + 100 My L = xo + 0.278km
hr 3600



Euler’s method

Imagine that you are driving a car down a highway.

At time t=0, we measure the car’s speed is 100km/hr.

o> G 0
t=0

dx/dt = 100km/hr

2 Which estimate do you trust most?
We can estimate the car’s position:

1 hr later x = xo + 10057+ 1hr = x, + 100km
1s later x = xo + 100 My L = xo + 0.278km
hr 3600



Euler’s method

We can use Euler’s method to estimate changes in population size:

1. Evaluate dN/dt
2. Calculate the state of the system after dt units of time elapse:
N(t+dt) = N(t) +

next state = current state +

! simple population growth:
dN/dt =rN
N
o
e ., R
dt

time




Euler’s method

If we needed to estimate the car’s position accurately after 1h, we could use Euler’s

method:
o) > G Sy~ = SN~ ~S I (¢
t=0 t=10m t=20m
dx/dt = 100km/hr dx/dt = 120km/hr dx/dt = 90km/hr

Repeat the following steps until you reach 1h.

1. Measure the car’s speed.
2. Project forward dt time units to estimate the car’s position at the next time step.

Mathematically:

1. Evaluate dx/dt
2. Calculate the state of the system after dt units of time elapse:
x(t+dt) = x(t) +

next state = current state +



Euler’s method

If we needed to estimate the car’s position accurately after 1h, we could use Euler’s

method:
t=1s t=3s
dx/dt = 101km/hr
> G > Gy ete
t=0
dx/dt = 100km/hr
t=2s

dx/dt = 100km/hr

Repeat the following steps until you reach 1h.

1. Measure the car’s speed. (evaluate dx/dt)
2. Project forward dt time units to estimate the car’s position at the next time step.

Smaller dt:
More accurate estimates
More computation



Euler’s method

We can use Euler’s method to estimate changes in population size:

1. Evaluate dN/dt
2. Calculate the state of the system after dt units of time elapse:
N(t+dt) = N(t) +

next state = current state +

! simple population growth:
dN/dt =rN
N
N
o
o
¢ dt

v

time




Euler’s method

We can use Euler’s method to estimate changes in population size:

1. Evaluate dN/dt
2. Calculate the state of the system after dt units of time elapse:
N(t+dt) = N(t) +

next state = current state +

simple population growth:
dN/dt =rN

v

time




Practical problems

Euler’s method approximates the dynamics of the system, but it is not an exact
solution.

Speed/accuracy trade-off: We need to choose a dt small enough to be accurate, but
large enough to be computationally feasible.

To avoid these problems, we almost always use R’s built-in ODE solver, Isoda().

The computer uses a method similar to Euler integration.
But the computer chooses the step size for us, in a way that maximizes
speed while guaranteeing a high level of accuracy.



Key concepts

* We cannot usually solve to find a state equation to simulate the
dyanmics of a biological system from a compartmental model.

* Instead, we use an ODE solver in R.

* We could also use Euler’s method (discrete approximation). But the
accuracy of our solution is sensitive to the size of the timestep, dt.
There is a practical tradeoff between speed (larger timesteps) and

accuracy (smaller timesteps).






Tutorial

1. Simulate the continuous population growth model three ways:
a. Using the state equation, N(t) = NO*exp(rt)
b. Using Euler’s method (discrete approximation)
c. Using an ODE solver

2. Simulate the dynamics of a predator-prey system using an ODE
solver

3. Simulate the dynamics of an SIR model using an ODE model

4. Modify the SIR model to an SEIR model



